Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(3): 102921, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36681124

RESUMEN

Circulating fatty acid-binding protein 3 (FABP3) is an effective biomarker of myocardial injury and peripheral artery disease (PAD). The endothelium, which forms the inner most layer of every blood vessel, is exposed to higher levels of FABP3 in PAD or following myocardial injury, but the pathophysiological role of endothelial FABP3, the effect of FABP3 exposure on endothelial cells, and related mechanisms are unknown. Here, we aimed to evaluate the pathophysiological role of endothelial FABP3 and related mechanisms in vitro. Our molecular and functional in vitro analyses show that (1) FABP3 is basally expressed in endothelial cells; (2) inflammatory stress in the form of lipopolysaccharide (LPS) upregulated endothelial FABP3 expression; (3) loss of endogenous FABP3 protected endothelial cells against LPS-induced endothelial dysfunction; however, exogenous FABP3 exposure exacerbated LPS-induced inflammation; (4) loss of endogenous FABP3 protected against LPS-induced endothelial dysfunction by promoting cell survival and anti-inflammatory and pro-angiogenic signaling pathways. Together, these findings suggest that gain-of endothelial FABP3 exacerbates, whereas loss-of endothelial FABP3 inhibits LPS-induced endothelial dysfunction by promoting cell survival and anti-inflammatory and pro-angiogenic signaling. We propose that an increased circulating FABP3 in myocardial injury or PAD patients may be detrimental to endothelial function, and therefore, therapies aimed at inhibiting FABP3 may improve endothelial function in diseased states.


Asunto(s)
Células Endoteliales , Proteína 3 de Unión a Ácidos Grasos , Lipopolisacáridos , Humanos , Células Endoteliales/patología , Proteína 3 de Unión a Ácidos Grasos/genética , Inflamación/inducido químicamente , Transducción de Señal/genética , Supervivencia Celular/genética
2.
PLoS One ; 17(9): e0274487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36149900

RESUMEN

The endothelium maintains and regulates vascular homeostasis mainly by balancing interplay between vasorelaxation and vasoconstriction via regulating Nitric Oxide (NO) availability. Endothelial nitric oxide synthase (eNOS) is one of three NOS isoforms that catalyses the synthesis of NO to regulate endothelial function. However, eNOS's role in the regulation of endothelial function, such as cell proliferation and migration remain unclear. To gain a better understanding, we genetically knocked down eNOS in cultured endothelial cells using sieNOS and evaluated cell proliferation, migration and also tube forming potential in vitro. To our surprise, loss of eNOS significantly induced endothelial cell proliferation, which was associated with significant downregulation of both cell cycle inhibitor p21 and cell proliferation antigen Ki-67. Knockdown of eNOS induced cell migration but inhibited formation of tube-like structures in vitro. Mechanistically, loss of eNOS was associated with activation of MAPK/ERK and inhibition of PI3-K/AKT signaling pathway. On the contrary, pharmacologic inhibition of eNOS by inhibitors L-NAME or L-NMMA, inhibited cell proliferation. Genetic and pharmacologic inhibition of eNOS, both promoted endothelial cell migration but inhibited tube-forming potential. Our findings confirm that eNOS regulate endothelial function by inversely controlling endothelial cell proliferation and migration, and by directly regulating its tube-forming potential. Differential results obtained following pharmacologic versus genetic inhibition of eNOS indicates a more complex mechanism behind eNOS regulation and activity in endothelial cells, warranting further investigation.


Asunto(s)
Células Endoteliales , Óxido Nítrico Sintasa de Tipo III , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio/metabolismo , Antígeno Ki-67/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , omega-N-Metilarginina/metabolismo
3.
J Hypertens ; 40(7): 1303-1313, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35762471

RESUMEN

OBJECTIVE: Angiotensin II (Ang II)-induced endothelial dysfunction plays an important role in the pathogenesis of cardiovascular diseases such as systemic hypertension, cardiac hypertrophy and atherosclerosis. Recently, long noncoding RNAs (lncRNAs) have been shown to play an essential role in the pathobiology of cardiovascular diseases; however, the effect of Ang II on lncRNAs and coding RNAs expression in endothelial cells has not been evaluated. Accordingly, we sought to evaluate the expression profiles of lncRNAs and coding RNAs in endothelial cells following treatment with Ang II. METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured and treated with Ang II (10-6 mol/l) for 24 h. The cells were then profiled for the expression of lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS: In HUVECs following Ang II treatment, from a total of 30 584 lncRNA targets screened, 25 targets were significantly upregulated, while 69 were downregulated. In the same HUVECs samples, from 26 106 mRNA targets screened, 28 targets were significantly upregulated and 67 were downregulated. Of the differentially expressed lncRNAs, RP11-354P11.2 and RP11-360F5.1 were the most upregulated (11-fold) and downregulated (three-fold) lncRNAs, respectively. Assigning the differentially regulated genes into functional groups using bioinformatics reveals numerous genes involved in the nucleotide excision repair and ECM-receptor interaction. CONCLUSION: This is the first study to profile the Ang II-induced differentially expressed lncRNAs and mRNAs in human endothelial cells. Our results reveal novel targets and substantially extend the list of potential candidate genes involved in Ang II-induced endothelial dysfunction and cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , ARN Largo no Codificante , Angiotensina II/metabolismo , Angiotensina II/farmacología , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma
4.
Physiol Rep ; 9(1): e14661, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33369888

RESUMEN

OBJECTIVE: Atherosclerosis is the main cause of the cardiovascular disease (CVD). Elevated blood cholesterol and inflammation of the endothelium are two major mechanisms contributing to the establishment of atherosclerotic plaques. Statins, such as pravastatin, are blood-cholesterol lowering drugs commonly prescribed for patients with or at risk for CVDs. In addition to lowering blood cholesterols, statins have recently been shown to improve endothelial function in both hyper- and normocholesterolemic patients with atherosclerosis. To understand the molecular mechanisms underlying the endothelial function improvement by statins, we assessed the RNA profile of pravastatin-treated endothelial cells, particularly their mRNAs and long non-coding RNAs (lncRNAs). METHODS: Human umbilical vein endothelial cells (HUVECs) treated with pravastatin (10 µM) for 24 hr were profiled for lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS: Of the 30,584 different lncRNAs screened, 95 were significantly upregulated, while 86 were downregulated in HUVECs responding to pravastatin. LINC00281 and BC045663 were the most upregulated (~8-fold) and downregulated (~3.5-fold) lncRNAs, respectively. Of the 26,106 different mRNAs screened in the pravastatin-treated HUVEC samples, 190 were significantly upregulated, while 90 were downregulated. Assigning the differentially expressed genes by bioinformatics into functional groups revealed their molecular signaling involvement in the following physiological processes: osteoclast differentiation, Rap1 signaling pathway, hematopoiesis, immunity, and neurotrophin signaling pathway. CONCLUSIONS: This is the first lncRNA and mRNA expression profiling of pravastatin-mediated changes in human endothelial cells. Our results reveal potential novel targets and mechanisms for pravastatin-mediated vascular protection in atherosclerosis.


Asunto(s)
Endotelio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Pravastatina/farmacología , ARN Largo no Codificante/genética , Endotelio/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , ARN Mensajero/metabolismo , Complejo Shelterina/metabolismo , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...